Программа SDR Control – краткое руководство пользователя.

1. Общие сведения о программе.

Программа SDR Control является программой позволяющей контролировать следующие параметры приемника AFEDRI SDR:

- Центральную частоту приема
- «Цифровое» усиление канала цифрового приема (DDC)
- Усиление входного усилителя с регулируемым коэффициентом усиления (VGA).
- Показывать реальную частоту приема в случае работы совместно с трансвертерной приставкой.

А также сохранять во встроенном в SDR EEPROM следующие параметры «по умолчанию» (default):

- Центральную частоту приема
- Усиление входного усилителя с регулируемым коэффициентом усиления (VGA).
- «Цифровое» усиление канала цифрового приема (DDC)

После сохранения параметров «по умолчанию» и подключения SDR к персональному компьютеру, SDR стартует с сохраненными в EEPROM параметрами автоматически.

Возможность сохранения параметров «по умолчанию» позволяет, в некоторых случаях, использовать AFEDRI SDR без запуска программы SDR Control. Например, в случае использования AFEDRI SDR в качестве «панорамной приставки» к промышленному трансиверу, достаточно запустить программу SDR Control только один раз - для сохранения требуемых параметров. (Естественно, это в случае если для дальнейшей работы SDR не требуется перестройка

сохраненных параметров, т.е. SDR настроен на постоянную частоту, например ПЧ трансивера и не требуется регулировка усиления).

2. Установка и запуск программы SDR Control

2.1.Использование программы под Windows

Последнюю версию программы SDR Control можно найти и скачать (в том числе исходный код) на моем сайте <u>http://4z5lv.net</u>. Программа SDR может быть использована как самостоятельно так и в качестве plug-in к семейству программных приемников Winrad, HDSDR и других «клонов» использующих ExtIO_ интерфейс от Winrad.

Скачанный архив должен содержать следующие файлы:

- ExtIO_AFEDRI_SDR.dll это собственно сам plug-in, содержащий аппликацию.
- SDR_Control.exe это вспомогательная программа позволяющая запустить программу SDR Control независимо от наличия или отсутствия Winrad .
- QtCore4.dll –dll из пакета программной разработки Qt
- QtGui4.dll dll из пакета программной разработки Qt
- libgcc_s_dw2-1.dll dll от gcc компилятора MinGW
- mingwm10.dll dll от gcc компилятора MinGW

2.1.1. Использование SDR Control с программами семейства Winrad как plug-in

Для использования программы SDR Control в качестве plug-in, нужно разархивировать скачанный с моего сайта архив с последней версией программы в туже директорию, где установлен Winrad. Далее согласно инструкции к Winrad, процесс и названия меню незначительно меняются в зависимости от версии программы Winrad.

2.1.2. Независимый запуск программы SDR Control.

Для независимого запуска программы SDR Control без Winrad (для экспериментов с различными программами не поддерживающими plug-in интерфейс), нужно

разархивировать скачанный архив в любую директорию по вашему выбору и вкусу (лучше конечно создать новую). И запустить на исполнение файл SDR_Control.exe.

2.1.3. Использование SDR Control c Linrad

Начиная с версии Linrad 3.25, Linrad поддерживает подключение ExtlO plug-in интерфейс, поэтому сегодня нет необходимости в перекомпиляции исходного кода для поддержки AFEDRI SDR. Оставляю описание по компиляции только для желающих поэкспериментировать с интерфейсом AFEDRI SDR.

- 2.1.3.1. Запуская SDR Control совместно с Linrad в качестве plug-in в таком случае SDR Control будет стартовать автоматически после запуска Linrad. Для подключения SDR Control в качестве plug-in нужно:
 - Скачать с сайта <u>http://www.sm5bsz.com/linuxdsp/linrad.htm</u> архив с исходным кодом Linrad
 - Разархивировать исходный код в отдельную директорию
 - Скачать с моего сайта файл <u>wusers_hwaredriver.zip</u>, скопировать единственный исходный файл wusers_hwaredriver.c в директорию с исходниками Linrad
 - Перейти в директорию с исходным кодом Linrad. Запустить команду configure.bat
 - Запустить make.bat (тут возможны варианты в зависимости от настроек установленного у вас на компьютере компилятора)

Это довольно беглая и общая инструкция. Более подробная информация по компиляции имеется в исходных кодах Linrad и на сайте SM5BSZ <u>http://www.sm5bsz.com/linuxdsp/linrad.htm</u>.

Можно также попробовать использовать уже откомпилированную версию Linrad, которая также имеется на моем сайте <u>http://4z5lv.net</u> в секции <u>Downloads</u>.

3. Графический интерфейс

Программа SDR Control содержит четыре сменных экрана:

• SDR Control (Frequency Control в старых версиях программы)

- Command shell
- Filter tools
- About

Текущий рабочий экран выбирается нажатием соответствующей закладки в верхней части аппликации.

3.1. Закладка SDR Control

На Figure 1 показано содержимое экрана отображаемое при выборе закладки SDR Control,

Далее по порядку перечислено функциональное назначение каждого из элементов экрана:

- 3.1.1. Окно индикации «FE Frequency» отображает информацию о **реальной** частоте приема, на которую настроен цифровой генератор (NCO) используемый в Front End (микросхема AFEDRI8201) AFEDRI SDR.
- 3.1.2. Окно индикации «Central (LO) Frequency» отображает центральную частоту приема SDR, которая в обычном режиме совпадает с содержимым окна «FE Frequency» или отличается от него прибавлением частотного сдвига если SDR работает в сочетании с трансвертером (режим трансвертера описан ниже).
- 3.1.3. Окно индикации «Tune frequency» отображает информацию о частоте настройки программного приема. Данная информация передается в SDR Control из основной программы (Winrad, HDSDR, Linrad). Естественно, основная программа должна запускать SDR Control как plug-in. Если же SDR Control используется независимо или с программой, которая не поддерживает ExtIO_ plug-in интерфейс, то окно индикации «Tune frequency» отображает «O».

Figure 1 SDR Control tab screen

- 3.1.4. Слайдер (ручка) изменения шага перестройки частоты «Tune step x10» меняет минимальный шаг перестройки, перестройка осуществляется виртуальной ручкой настройки (или валкодер находится в нижней центральной части экрана, описана ниже). Текущий шаг перестройки отображается в текстовом виде «Tune step x10...» или альтернативно положением слайдера под соответствующим разрядом индикатора «Central (LO) Frequency»
- 3.1.5.Окно текстового ввода «Central (LO) Frequency input» служит для быстрого ввода частоты NCO с помощью клавиатуры. Для ввода новой частоты следует набрать желаемую величину и нажать клавишу «Enter».
- 3.1.6.Кнопка «SDR connect» при ее нажатии программа осуществляет повторное соединение по USB интерфейсу с AFEDRI SDR и инициализирует «железо» SDR. В новых версиях программы данная процедура осуществляется автоматически. Т.е. программа сканирует USB порты, проверяя наличие подключенного AFEDRI SDR, и при его обнаружении инициализирует «железо» SDR. Нажатие данной кнопки необходимо также для перезагрузки и вступления в силу параметров, ранее записанных во внутренний EEPROM SDR из закладки «Command shell» (см. далее).

3.1.7.Виртуальный светодиодный индикатор и текстовое сообщение, справа от кнопки «SDR connect» - отображает статус инициализации SDR. Если SDR обнаружен и успешно «стартовал», то цвет индикатора - зеленый и правее надпись с названием обнаруженного USB устройства (например - «AFEDRI-SDR Audio»). Если SDR не подключен к компьютеру или возникла неисправность, то цвет индикатора - красный и выводится сообщение об ошибке (см. Figure 2.).

Figure 2 SDR Control screen when AFEDRI SDR disconnected from PC

- 3.1.8. Кнопка «SDR Init» при ее нажатии SDR производит ре-инициализацию микросхемы Front End
- 3.1.9. Виртуальный светодиодный индикатор и текстовое сообщение, справа от кнопки «SDR Init» - отображает статус инициализации микросхемы Front End установленной в SDR. Если Front End прошел успешную инициализации, то цвет индикатора - зеленый и правее надпись с соответствующим сообщением. Если

был обнаружен сбой при инициализации микросхемы, то цвет индикатора - красный и выводится сообщение об ошибке (см. Figure 2.).

- 3.1.10. Ручка настройки ее назначение перестройка центральной частоты приема с шагом заданным «Tune step x10» слайдером .
- 3.1.11. Ручка «FE Gain» регулирует «цифровое» усиление в канале цифрового приемного тракта (DDC) микросхемы AFEDRI8201. Имеет предел регулировки от 1 до 4. Окно индикации справа от ручки отображает текущее значение в относительных единицах.
- 3.1.12. Ручка «RF Gain» регулирует усиление входного усилителя SDR. Окно индикации справа от ручки отображает текущее значение в дБ.
- 3.1.13. Чек бокс «Transverter mode», установка «галочки» выбирает режим трансвертера, т.е режима когда в окне индикации «Central (LO) Frequency» отображается центральная частота приема с добавлением частоты внешнего (первого) гетеродина трансвертера. При установке галочки в данном чек боксе появляется дополнительное текстовое окно «1-st Heterodyne Frequency».
- 3.1.14. Текстовое окно «1-st Heterodyne Frequency», отображает и позволяет ввести с помощью клавиатуры частоту внешнего (первого) гетеродина. По умолчанию это 1268000000 Гц (для случая использования с 1296МГц/28МГц трансвертером)

Figure 3 Transverter mode

3.2. Закладка «Command shell»

Изображение экрана режима «Command shell» приведено на Figure 4.

- 3.2.1. Чек бокс «Route console output to HID interface» не используется в данной версии.
- 3.2.2. Текстовое окно «Command Input» не используется в данной версии.

3.2.2.1. Порядок расчета частоты семплирования:

Реальное значение частоты семплирования зависит от Частоты Опорного Генератора и децимации чипа AFEDRI8201, может быть подсчитано согласно следующим правилам:

 Вначале выбираем желаемую частоту семплирования (250000Hz в нашем примере) Делим частоту Опорного Генератора на желаемую частоту семплирования умноженную на 4 (так мы подсчитываем децимацию CIC фильтра):

DecRate = Fmain / (4 * SampleRate);

Пример: для Fmain = 76800000 Hz ,

DecRate = 76800000/ (4*250000) = 76.8,

Нам нужно округлить до ближайшего целого значения т.е. в нашем примере - DecRate = 77

• Подсчитуваем реальную частоту семплирования:

SampleRate = Fmain/(4*DecRate), в нашем примере

SampleRate = 76800000/(4*77) = 249350.6 (Hz)

 Теперь мы ближайшее целое значение как новую частоту семплирования, которая будет использоваться AFEDRI SDR после нового соединения к линии USB. (249351Hz в нашем примере).

Вы конечно можете записать в AFEDRI SDR "неправильное значение" например 250000Hz (вместо 249351 в нашем примере), но в действительности AFEDRI SDR будет посылать данные с частотой семплирования аналогичной той что рассчитана по правилу описанному выше.

Внимание частота семплирования не может превышать 250kHz!

Для варианта AFEDRI SDR - Dual Channel Mode, частота семплирования не может превышать 125кГц для режима - "Dual Channel mode".

- 3.2.3. Кнопка "Change Sample Rate" когда данная кнопка нажата, программа отпавляет значение новой частоты семплирования в SDR (прочитанное из текстового окна "Command Input"), и SDR записывает новое значение во внутренний EEPROM.
- 3.2.4. Чек бокс "Single Channel RX Mode" (или "Dual Channel RX mode") используется только в конфигурации Dual channel Receiver! Когда этот чек бокс отмечен печатается текст: "Dual Channel RX mode", и альтернативно отображается тест: "Single Channel RX Mode" если данный чек бокс не отмечен (по умолчанию). "Dual

Channel RX mode" не должен быть отмечен/использован для одноканальных приемников.

- 3.2.5. Кнопка "Change RX mode" когда дана кнопка нажата, программа считывает статус чек бокса "Single Channel RX Mode" и отправляет на SDR новое значение, которое будет записано в EEPROM. Одноканальная версия (Single channel AFEDRI SDR) должна быть отконфигурирована только в режиме "Single Channel RX Mode".
- 3.2.6. Текстовое окно «Main clock Input» служит для изменения частоты опорного генератора AFEDRI SDR, сразу после загрузки содержит величину, прочитанную в EEPROM SDR.
- 3.2.7.Кнопка «Change Main clock» инициирует процесс записи нового значения частоты опорного генератора в EEPROM SDR.

Внимание!!!: При перезаписи частоты опорного генератора следует убедится, что она соответствует частоте микромодуля опорного генератора установленного на печатной плате SDR. Рекомендуется менять данное значение только в случае замены чипа опорного генератора на чип имеющий другую чстоту. Частота генератора может отличаться в различных экземплярах SDR.

- 3.2.8. Центральное текстовое окно служит для вывода служебных (debug) сообщений.
- 3.2.9.Кнопка «Save defaults» инициирует процесс записи в EEPROM SDR текущих данных о работе приемника, как параметров «по умолчанию». После нажатия кнопки сохраняются в EEPROM следующие данные:
 - Центральная частота приема
 - Усиление входного усилителя с регулируемым коэффициентом усиления (VGA)
 - Усиление канала цифрового приема (DDC)

Эти сохраненные параметры, приемник будет использовать в качестве настойки сразу же после подключения к персональному компьютеру.

🚰 SDR Network Control Box		
SDR Control Command shell Filter tools Netwok	About	
Route console output to HID interface	Single Channel RX Mode	Main Clock input 80000000
250000	Change sample rate Change RX mode	2 Change Main Clock
New Sample Rate was saved		
	Save defaults	

Figure 4 Command shell tab

3.3. Закладка «Filter tools»

Не несет никакой функциональности (возможно, будет использована в будущем).

3.4. Закладка «About»

Имеет только информационное значение (см. Figure 5.),

- Отображает версию firmware «прошитую» внутри AFEDRI SDR
- Отображает частоту опорного генератора AFEDRI SDR, содержит величину, прочитанную из EEPROM SDR сразу после загрузки.
- Отображает текущее значение частоты семплирования
- Отображает текущий режим приема (Одноканальный/Двухканальный)

Figure 5 About tab